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Abstract. A study of the anharmonic lineshifts and linewidths of phonon modes in 
lead is presented. The interatomic potential is modelled according to a force constant 
scheme which includes many-body &e& both in the harmonic and anharmonic 
parts. An enhanced damping of the (0.8,0,0) longitudinal mode is predicted and an 
explanation for this anomalous behaviour is provided. The results are discussed in 
connection with the available experimental data. 

1. Introduction 

The first observations of microscopic anharmonic effects in metals were carried out 
on lead [l] and aluminum [Z]. The temperaturedependent energy broadening of the 
inelastically scattered neutron groups was interpreted as arising from the lifetimes of 
the phonons via the uncertainty principle. Since then, some experimental [3-81 and 
theoretical [9-111 work has been done in order to quantify the effects of the anharmonic 
interactions on the phonon linewidths and lineshifts in metals. However, because of 
the difficulty of these measurements the experimental data are affected by errors of 
20-25% whereas refined calculations are constrained by long computing times. In 
some previous papers, theoretical investigations of the phonon self-energy associated 
with one-phonon scattering processes in noble metals [12, 131, aluminum [12, 141 and 
palladium [15] have been presented. In particular, it has been shown that: 

(i) the room temperature anharmonic effects can be well described in second-order 
perturbation theory; 

(ii) the phonon-phonon scattering theory accounts for the trends observed by the 
experimentalists in Cu, AI and Pd. Although the Feynmann diagrams which we use 
to evaluate the phonon self-energy do not contain electron-phonon vertex processes, 
these contributions are (to some extent) taken into account in our model. In fact, 
the harmonic and anharmonic interactions have been parametrized according to a 
force constant scheme which fits experimental phonon frequencies and thermoelastic 
data. Hence, the theoretical eigenvalues, eigenvectors and interatomic potential also 
incorporate the many-body effects due to the electronic charge distribution. In other 
words, we are using dressed phonons and not simply phonons as determined by bare 

t On leave from: Institut fjr Theoretisehe Physik, Universitiit Hamburg, Jungiusstrasse 9, 2000 
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09538984/91/336249+08$03.50 0 1991 IOP Publishing Ltd 6249 



6250 M Zoli 

ion-ion model potentials. This empirical approach allows one to sample the range of 
the interatomic forces and to weigh the effects of many-body harmonic and anharmonic 
interactions. 

Among the FCC metals, lead is known to be particularly sensitive to the 
anharmonic character of the lattice vibrations. Because of the low Debye temperature, 
0, N_ Tm/7 where T, is the melting temperature, the anharmonic effects are visible 
in a large range of temperatures. Moreover, the comparatively high superconducting 
transition temperature (7.2 K) indicates that the electron-phonon coupling plays a 
relevant role in lead. It should also be added that the superconducting transition has 
negligible influence on the phonon spectrum [IS]. In this paper, I present calculations 
of phonon linewidths and lineshifts in lead along the high symmetry directions of the 
three-dimensional Brillouin zone (JDBZ). 

2. The model 

The harmonic part of the interatomic potential contains long range two-body forces 
and three-body angular forces. The harmonic force constants are defined as follows: 

1 
302 

Si = -W"(cos@KL) 

where i labels the neighbour shell; 4(ri) is the pairwise potential; W(COS@'~) is the 
three-body potential and Ji<L labels the tern of atoms. a is the lattice constant. 
The parameters in equations (1) are determined by a least-squares fit to the observed 
phonon frequencies (at 80 K)  along the high symmetry directions of the 3DBZ [4]. 
The experimental second-order elastic constants are also taken into account in the 
fitting procedure. The range of the potential has to be considerably long to account 
for the strong Kohn anomalies in the dispersion curves [17]. Two-body forces are 
therefore extended up to the tenth-neighbour shell and three-body forces, in the last 
of equations ( I ) ,  are chosen such that: 

(i) J and L are nearest neighbours of K; 
(ii) J and L are up to second-neighbours of each other. 

In table 1, the harmonic force constants values are reported. In figure 1, the 
theoretical dispersion relations are shown together with the experimental data. The 
drop in frequency at the zone boundary observed along the [(,O,O] direction (and 
ascribed to a very marked Kobn anomaly [17]) are reproduced by our model. Further 
extension of the interaction range does not improve the quality of the fitting. 

In [13], the anharmonic force constants have been fitted to the experimentally 
known higher order elastic constants (HOEC) by applying the method of homogeneous 
deformations. Such an approach does not hold for Pb since the HOEC have not been 
measured for this metal. Alternatively, the third-order derivatives of the potential 
are determined by fitting the experimental linear coefficient of thermal expansion at 
three selected temperatures (T = 100, 300 and 500 K) and the room temperature 
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Table 1. Harmonic and anharmonic force constants values for Pb. The &ts are 
lo1' dyn cm-'. a is the lattice constant. 

x) 

a 
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34 

2 

r x .. .. 
Figure 1. Phonon dispersion relations in Pb, along the symmetry directions of the 
Brillouin zone. The pluses are the 80 K experimental valuer [4]. 

thermodynamic Griineisen parameter. The range of the cubic two-body potential 
has been extended to the third-neighbour shell (Y, = ri&' (vi) i = 1,2,3) and cubic 
nearest-neighhour angular forces (Z, = ( 1/3a2)Wttf(cos OJRL)) have been also taken 
into account. The values of the cubic force constants are reported in table 1. Z, plays 
an essential role in stabilizing the numerical value of the leading force constant Yl. 
This is also indicative of the relevance of many-body effects in the anharmonic tail of 
the interatomic potential in Pb. The fourth-order derivatives of the two-body potential 
have been fitted to the experimental constant pressure specific heat at  T = 100, 300 
and 500 K. The values obtained for the force constants Qi = r;@"'(ri) i = 1,2,3, are 
also listed in table 1. 

3. Results and discussion 

Due to anharmonicity the frequencies u(qj) of phonons, with wavevector q and mode 
index j ,  are volume- and temperature-dependent. To the lowest order in perturbation 
theory the harmonic frequencies wo shift to 

w ( q j )  = w o ( q j )  + A ~ ( q j )  (2) 

with 

AT(qj) = A@)(qj)  t A(3)(qj) t A(4)(9j). (3) 
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The shift A("), which accounts for the dilation effects, is given by 

A(O)(qj) = -3a(T)TY(qj)wo(qj) (4) 

where u(T) is the linear coefficient of thermal expansion and y ( q j )  is the mode 
Griineisen parameter. Both u(T) and y ( q j )  are related to the third-order derivatives of 
the interatomic potential [13]. Hence, the volume-dependent shift A @ )  is determined 
by the very cubic term of the anharmonic Hamiltonian. The terms A(') and A(3) 
are the lowest order contributions to the real part of the phonon self-energy and 
depend on the Fourier transforms of the fourth- and third-order force constant 
tensors, respectively. They are evaluated a t  constant volume and their temperature 
dependence is displayed through the Bose-Einstein statistical factors. Numerical 
evaluation of A(4) and A(3) requires summations over the wavevectors in the 3DBZ 
[13]. Because of the many irregularities in the dispersion relations of Pb, particular 
care has to be taken in the computation of A(3) which contains the principal values 
of linear combinations of three phonon frequencies. The principal value has  been 
represented by 

(5) 

with E = 0.5 meV. Numerical convergence in the second decimal figure of A(3) is 
achieved by using 494G2 points in the first 3DBZ. I have computed A('), A(4) and 
A(3) along the three main symmetry directions at 5, 80 and 290 K .  The dilation term 
and the fourth-order contribution are generally small and tend to cancel each other 
whereas A(3) essentially determines the total shift of the phonon frequencies. 

Table 2. Room temperature Line shifts of phonons in Pb with respect to 5 I<. The 
shiftsareinmev. ThewavevedorsareinunitsofZrfa. AT isdefinedinequation (2). 
The experimental data are taken from [6]. 

(0.1 0.0 0.0) -0.65 -0.28 -0.61 -0.26 
(0.3 0.0 0.0) -1.61 -0.75 -1.02 -0.47 
(0.5 0.0 0.0) -1.23 -0.59 -0.75 -0.42 
(0.7 0.0 0.0) -0.34 -0.16 -0.51 -0.24 
(0.9 0.0 0.0) t0 .79  t0 .38  tO.82 t0 .28  

(0.1 0.1 0.1) -0.69 -0.33 -0.41 -0.21 
(0.2 0.20.2) -0.82 -0.38 -0.26 -0.12 
(0.3 0.30.3) -0.61 -0.31 -0.74 -0.34 
(0.4 0.40.4) -0.55 -0.26 -0.72 -0.33 

(0.1 0.1 0.0) -0.62 -0.31 -0.33 - 
(0.3 0.30.0) -1.11 -0.47 -0.78 - 
(0.5 0.5 0.0) -1.62 -0.79 -1.01 - 
(0.70.70.0) -1.51 -0.73 -0.69 - ~~ 

* Longitudinal phon-. 
Transverse phonons; along the [ (EO] direction, the data refer to the Ti branch. 

In table 2, the calculated total shifts 4 at 290 K are reported for both longitudinal 
and transverse phonons. To allow a comparison with the available experimental data 
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[e], the AT values at 5 K have been subtracted from the room temperature values. 
The agreement between theory and experiment is poor, nonetheless the positive shift 
observed at large momentum transfers along the [(, O,O] direction is reproduced by the 
calculation; a t  the zone boundary, the anharmonic vibrations stabilize the anomalous 
drop of the longitudinal and transverse modes. By increasing temperatures the 
energies of these modes shift upwards and the phonon spectrum tends to flatten. 
In this view, the irregularities in the dispersion relations of P b  are more visible at 
low temperatures, say below 100 K,  where the long range interatomic forces dominate 
the dynamics. At higher temperatures, the anharmonic lattice vibrations acquire 
importance and the shorter range interactions influence the phonon spectrum. 

In table 3, the total shifts at 80 K are listed with respect to 5 K. Here the 
theoretical shifts eve larger, in absolute value, than the experimental data. For some 
low momentum modes, i.e. the (0.3,0,0) longitudinal and transverse, the (0.2,0.2,0.2) 
longitudinal and the (0.3,0.3,0) transverse, the energy shifts already seem to be 
appreciable at  5 K. This would be indicative of strong coupling between electrons 
and some long wavelengths lattice vibrations. 

Table 3. Line shifts of phonons in Pb, at 80 K with respect to 5 K.  The symbols 
are defined in table 2. 

(0.1 0.0 0.0) 
(0.3 0.0 0.0) 
(0.5 0.0 0.0) 
(0.7 0.0 0.0) 
(0.9 0.0 0.0) 

(0.1 0.1 0.1) 
(0.2 0.2 0.2) 
(0.3 0.3 0.3) 
(0.4 0.4 0.4) 

(0.1 0.1 0.0) 

(0.7 0.7 0.0) 

(0.3 0.3 0.0) 
(0.5 0.5 0.0) 

-0.23 
-0.63 
-0.41 
-0.11 
f0.26 

-0.23 
-0.29 
-0.21 
-0.19 

-0.21 
-0.34 
-0.53 
-0.48 

-0.12 
-0.26 
-0.19 
0.0 

+0.19 

-0.12 
-0.13 
-0.09 
-0.07 

-0.12 
-0.09 
-0.16 
-0.30 

-0.20 
-0.32 
-0.24 
-0.16 
f0.27 

-0.14 
-0.08 
-0.24 
-0.23 

-0.12 
-0.26 
-0.36 
-0.31 

-0.07 
-0.15 
-0.09 

0.0 
+0.16 

0.0 
+0.08 
-0.09 
-0.10 

- 
- 
- 
- 

The broadening of the phonon lines is given in second-order perturbation theory 
by 

r(q.i) = $ c 
m j l h  

X {(.I +nz+ l)[s(wo(q.j)-Wo(l)-wo(2))-6(wo(~.j)  + ~ o ( l )  +w0(2))1 

+ (ni - nz)[S(wo(qd + wo(1) - wo(2)) - s(wo(q.d - wo(1) + ~0(2))11 

(6) 

where V(3)  is the Fourier transform of the third-order force constants tensor and 
wo( i )  G uo(qi j i )  and ni E n(wo( i ) )  are the Bose-Einstein statistical factors. The 
double sums over the Brillouin zones are reduced to a sum over q1 because of 
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translational invariance. Numerical convergence in the second decimal figure is 
achieved by using around 10000 points in the first BZ. The method of handling the 
6-functions is described in [12]. In table 4, the calculated room temperature linewidths 
are reported. The discrepancies between theory and experiment are relevant along all 
the symmetry directions and the computed values are everywhere larger than those 
measured by Furrer and Halg [SI. In particular, I predict an enhanced damping for 
the (0.8,0.0,0,0) longitudinal mode mainly due to umklapp scattering processes which 
involve two transverse modes. The value of this phonon width is in fair agreement 
with that observed by Stedman el a/ [18] at 300 K (2r  = 1.7 meV). At some points 
in q1 space, the anharmonic coupling V ( 3 )  in the three-phonon vertex is strong and 
the decay process, longitudinal + transverse + transverse is favoured. Such points 
together with the frequencies of the corresponding transverse phonons are given in 
table 5. A high density of final states should be expected for this scattering process. 

Table 4. Room temperature linewidths for Pb, in meV. The experimental data an 
taken from [6]. 

4 

(0.1 0.0 0.0) 
(0.3 0.0 0.0) 
(0.5 0.0 0.0) 
(0.7 0.0 0.0) 
(0.8 0.0 0.0) 
(0.9 0.0 0.0) 
(1.0 0.0 0.0) 

21" zi-& zrb zrkXp 

0.11 0133 0.18 0.02 
0.25 0.10 0.34 0.04 
0.81 0.26 1.14 0.09 
1.25 0.20 0.94 0.15 
1.84 0.22 0.93 0.16 
1.52 0.27 0.75 0.16 
1.28 0.47 0.50 0.14 

(0.1 0.1 0.1) 0.36 0.05 0.19 0.02 
(0.2 0.2 0.2) 0.24 0.18 0.37 0.04 
(0.30.3 0.3) 0.18 0.14 0.46 0.05 
(0.4 0.4 0.4) 1.05 0.22 0.57 0.07 

(0.1 0.1 0.0) 0.16 0.04 0.14 - 
(0.3 0.3 0.0) 0.46 0.19 0.39 - ~ 

(0.5 0.5 0.0) 0.87 0.35 0.79 - 
(0 .70.70.0)  1.38 0.41 0.75 - 
a Longitudinal phon-. 
Transverse phonons; along the [<CO] direction, the data refer to the TI branch 

At 80 K the linewidths are about one-third of the room temperature values, 
consistently with the reduction of the experimental data. The Bose-Einstein 
distributions govern the linear temperature dependence of the linewidths in the range 
80-290 K .  I have also calculated equation (6) a t  425 K to allow a comparison with 
the first measurements of phonon linewidths which were carried out by Brockhouse el 
al [l]. For the (0.8,0,0) longitudinal mode the theory yields a linewidth of 2.4 meV 
whereas the experimental value is 1.95 meV. 

In conclusion, the evaluation of the phonon self-energies in lead shows that the 
lattice dynamics in this metal is strongly influenced by anharmonic interactions. 
The frequencies of the phonon spectrum are always lower than 10 meV so that the 
computed lineshifts AT and linewidths 2r are relatively much larger in lead than in 
the other FCC metals. For the (0.8,0,0) longitudinal mode the ratio 2I'/w, is N 0.2 at 
room temperature and ,  at these values, the applicability of a perturbative approach 
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Table 5. Anomalous umklapp scattering processes for the (0.8.0.0,O.O) longitudinal 
mode in Pb. In the 91 space points listed in the h t  column, the three-phonon vertex 
coupling is strong. The wavevectors are in units of 2n10. wo(qlj1) and wo(pzjz)  are 
the energies (in meV) of the tr-vem phonons which originate from the decay of 
the longitudind mode. 92 = q - 91 + G, where G is a reciprocal lattice vector. 

41 w o ( m j i )  wo(4aj2) 

(0.0 

(fO.1 
(*0.1 
(fO.1 

(i0.033 
(f0.033 

(f0.133 
(f0.133 
(fO.2 
(f0.2 
(f0.233 
(f0.233 
(f0.266 
(f0.266 
(i0.533 
(f0.533 
(f0.766 

-0.744 
-0.755 
-0.445 
-0.957 
-0.507 
-0.692 
-0.637 
-0.562 
-0.208 
-0.167 
-0.376 
-0.483 
-0.681 
-0.518 
-0.032 
+0.008 
+0.283 

f0.133) 

f0.133) 
f0.3) 

f0.133) 

*0.066) 
i 0 . M )  
i O . 6 3 3 )  
i0.633) 
2~0.466) 
f0.466) 
f0.433) 

*0.466) 
f0.466) 

f0.8) 
f0.3) 

f0.7) 

*0.8) 

4.73 
4.80 
3.84 
6.52 
4.0 
4.64 
4.37 
4.27 
3.44 
3.45 
3.91 
4.30 
4.10 
4.54 
5.19 
5.20 
4.34 

3.91 

4.80 
2.12 
4.64 
4.0 
4.27 
4.37 
5.20 
5.19 
4.73 
4.34 
4.54 
4.10 
3.45 
3.44 
4.30 

3 8 4  

may be doubtful. In view of the fact that the available experimental data [6] and 
[18] are in conflict, i t  is my hope that new experimental research will be devoted 
to establishing the possible existence and relevance of enhanced dampings of phonon 
modes in lead. 
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